References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Fletterick, R. J., Tsai, C. \& Hughes, R. E. (1971). J. Phys. Chem. 75, 918-922.
Görbitz, C. H. \& Backe, P. (1996). In preparation.
Görbitz, C. H. \& Etter, M. C. (1992). Int. J. Pept. Protein Res. 39. 93-110.
Görbitz, C. H. \& Gundersen, E. (1996a). Acta Chem. Scand. In the press.
Görbitz, C. H. \& Gundersen, E. (1996b). In preparation.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kempster, C. J. E. \& Lipson, H. (1972). Acta Cryst. B28, 3674.
Mitra. S. N. \& Subramanian, E. (1994). Biopolymers, 34, 1139-1143.
Pattabhi, V., Venkatesan, K. \& Hall, S. R. (1974). J. Chem. Soc. Perkin Trans 2, pp. 1722-1727.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stenkamp. R. E. \& Jensen, L. H. (1975). Acta Cryst. B31, 857-861.
Suresh. C. G. \& Vijayan, M. (1985). Int. J. Pept. Protein Res. 26, 311-328.

Acta Cryst. (1996). C52, 1767-1770

Intermediates in the Synthesis of (+)-Grandisol. I

J. Zukerman-Schpector ${ }^{a}$ and Hugo J. Monteiro ${ }^{b}$
${ }^{a}$ Departemento de Química, Universidade Federal de São Carlos, Caixa Postal 676, 13565-905 - São Carlos, SP, Brazil, and ${ }^{\text {b }}$ Departemento de Química, Universidade de Brasilia, 70910-900 - Brasília, DF, Brazil. E-mail: julio@ifqsc.sc.usp.br

(Received 31 January 1996; accepted 26 March 1996)

Abstract

In both ($2 R, 3 S$)-3-(2-methoxyethyl)-3-methyl-2-(phenylsulfonyl)cyclopentanone, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}(1)$, and ($1 S, 2 R, 3 S$,$5 R$)-2,5-dimethyl-1-(phenylsulfonyl)bicyclo[3.2.0]hept-ane-2,3-diol, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$ (2), the five-membered ring is in an envelope conformation. In compound (1), the phenylsulfonyl and the methyl groups are cis to each other and the cyclization to the bicycloheptane, (2), occurs with retention of this stereochemistry. The hydroxyl groups in (2) are trans to each other.

Comment

The terpene, (+)-cis-2-isopropenyl-1-methylcyclobutaneethanol (3), named (+)-grandisol (Tumlinson et al., 1971) is the principal component in the aggregation
pheromone produced by the male of the cotton boll weevil, Anthonomus grandis Boheman (Franke et al., 1989), which is a serious pest in Brazilian cotton fields. Its potential use in traps for monitoring crop infestation in integrated pest management makes this terpene, especially the more active (+)-enantiomer (Dickens \& Mori, 1989), a target for the synthetic organic chemist. As the success of a synthetic route aiming at the synthesis of $(+)$-grandisol, starting with the easily available $(+)$-citronellol (4), depends on the generation of intermediates with the correct functionality and stereochemistry, the unambiguous stereostructure determination of them is required. We report here the crystal structure determination of two of them, $(2 R, 3 S)$-3-(2-methoxy-ethyl)-3-methyl-2-(phenylsulfonyl)cyclopentanone, (1), and ($1 S, 2 R, 3 S, 5 R$)-2,5-dimethyl-1-(phenylsulfonyl)bi-cyclo[3.2.0]heptan-2,3-diol, (2).

(1)

(2)

(4)

In both compounds, the S atom is tetrahedrally bonded to two C and two O atoms with tetrahedral angles ranging from 108.1 (2) to $109.5(3)^{\circ}$ in (1) and from $106.59(10)$ to $110.85(10)^{\circ}$ in (2), with the exception of the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle which is $117.9(3)^{\circ}$ and $116.82(10)^{\circ}$ in (1) and (2), respectively. In compound (1), the phenylsulfonyl and the methyl groups are cis to each other and cyclization to bicycloheptane, (2), occurs with retention of this configuration, the rings being, therefore, cis-fused. Cremer \& Pople's (1975) puckering parameters show that, in both compounds, the five-membered ring is in an envelope conformation, $q_{2}=0.390(6) \AA, \varphi_{2}=75.1(9)^{\circ}\left(E_{C 3}\right)$ for (1) and $q_{2}=0.361(3) \AA, \varphi_{2}=65.3(5)^{\circ}\left(E_{C 3}\right)$ for (2). The four-membered ring in compound (2) is planar within experimental accuracy, making a dihedral angle of $106.1(1)^{\circ}$ with the best least-squares plane through the five-membered ring. The phenyl ring makes a dihedral angle of 58.7 (3) ${ }^{\circ}$ with the cyclopentanone ring in (1) and dihedral angles of 117.7 (1) and $15.2(2)^{\circ}$ with the five- and four-membered rings, respectively, in (2).

The molecules in (1) are joined through a C $\mathrm{H} \cdots \mathrm{O}$ interaction: $\mathrm{C} 4 \cdots \mathrm{O}^{\mathrm{i}}=3.334(8), \mathrm{HC} 4 \cdots \mathrm{O}^{\mathrm{i}}=$ $2.47(8) \AA, \mathrm{C} 4-\mathrm{HC} \cdots \cdots 3^{i}=142(5)^{\circ}$ [symmetry op-

[^0]eration: (i) $=-x, 0.5+y,-1.5-z]$. The molecules in (2) are joined through hydrogen bonds: $\mathrm{O} 3 \cdots \mathrm{Ol}^{\mathrm{ii}}=$ $2.931(2), \mathrm{HO} 3 \cdots 1^{\mathrm{ii}}=2.152(31) \AA, \mathrm{O} 3-\mathrm{HO} 3 \cdots \mathrm{Ol}^{\mathrm{ii}}$ $=163(3)^{\circ} ; \mathrm{O} 4 \cdots \mathrm{O}^{\mathrm{iii}}=2.927(2), \mathrm{HO} 4 \cdots \mathrm{O} 2^{\mathrm{iii}}=$ $2.122(32) \AA, \mathrm{O} 4-\mathrm{HO} 4 \cdots \mathrm{O} 2^{\mathrm{iii}}=172(3)^{\circ}$ [symmetry operations: (ii) $=1-x, 2-y, 1-z$; (iii) $=-1+x, y, z]$.

Fig. 1. The molecular structure of (1) showing the atom labelling. 50% probability displacement ellipsoids are shown.

Fig. 2. The molecular structure of (2) showing the atom labelling. 50% probability displacement ellipsoids are shown.

Experimental

Crystals of compound (1) were obtained by slow evaporation from diethyl ether at 269 K . Crystals of compound (2) were obtained by slow evaporation from a dichloromethane/diethyl ether mixture.

Compound (1)

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=296.381$
Orthorhombic
$P 2 \mid{ }_{2} 2_{1}$
$a=10.004$ (1) \AA
$b=10.273$ (1) \AA
$c=14.719$ (1) \AA
$V=1512.69(23) \AA^{3}$
$Z=4$
$D_{x}=1.3014 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
2237 measured reflections
2211 independent reflections
1486 observed reflections

$$
[I>2 \sigma(I)]
$$

Refinement

Refinement on F^{2}
$R(F)=0.0681$
$w R\left(F^{2}\right)=0.1613$
$S=1.110$
2211 reflections
243 parameters
Only coordinates of H atoms refined and one common U
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1120 P)^{2}\right.$ $+0.4682 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.041$
$\Delta \rho_{\text {max }}=0.495 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.625 \mathrm{e}^{-3}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=9.49-16.79^{\circ}$
$\mu=0.224 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Irregular
$0.50 \times 0.38 \times 0.30 \mathrm{~mm}$
Colourless

$$
\begin{aligned}
& R_{\text {int }}=0.0093 \\
& \theta_{\max }=27.98^{\circ} \\
& h=0 \rightarrow 13 \\
& k=0 \rightarrow 13 \\
& l=-1 \rightarrow 19 \\
& 2 \text { standard reflections } \\
& \quad \text { frequency: } 30 \text { min } \\
& \text { intensity decay: }-1.1 \%
\end{aligned}
$$

Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0125 (44)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Absolute configuration: Flack (1983)
Flack parameter = -0.08 (22)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (1)

$U_{\mathrm{eq}}=$			$(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.
x	y	Σ	U_{eq}
$-0.17381(13)$	$-0.03800(13)$	$-0.83449(10)$	$0.0574(4)$
$-0.1200(5)$	$0.2141(5)$	$-0.9439(3)$	$0.0811(14)$
$0.0309(4)$	$0.0240(5)$	$-0.6346(3)$	$0.0700(11)$
$-0.1492(5)$	$-0.1467(4)$	$-0.7786(4)$	$0.0802(13)$
$-0.2147(5)$	$-0.0615(5)$	$-0.9270(3)$	$0.0840(15)$
$-0.0248(6)$	$0.1659(5)$	$-0.9091(4)$	$0.0559(12)$
$-0.0277(4)$	$0.0623(5)$	$-0.8338(3)$	$0.0457(10)$
$0.1096(5)$	$-0.0065(5)$	$-0.8414(4)$	$0.0550(12)$

C4	$0.1985(6)$	$0.1091(7)$	$-0.8668(4)$	$0.0628(15)$
C5	$0.1193(7)$	$0.1920(8)$	$-0.9312(5)$	$0.073(2)$
C6	$0.1114(8)$	$-0.1054(8)$	$-0.9179(6)$	$0.078(2)$
C7	$0.1578(7)$	$-0.0745(6)$	$-0.7538(5)$	$0.069(2)$
C8	$0.1609(6)$	$0.0024(7)$	$-0.6666(5)$	$0.071(2)$
C9	$0.0276(10)$	$0.0670(9)$	$-0.5439(4)$	$0.081(2)$
C10	$-0.2950(5)$	$0.0597(6)$	$-0.7811(3)$	$0.0561(13)$
C11	$-0.3028(6)$	$0.0605(8)$	$-0.6864(4)$	$0.070(2)$
C12	$-0.3981(8)$	$0.1339(10)$	$-0.6457(5)$	$0.090(3)$
C13	$-0.4843(7)$	$0.2095(9)$	$-0.6935(6)$	$0.091(2)$
C14	$-0.4762(7)$	$0.2088(8)$	$-0.7876(6)$	$0.082(2)$
C15	$-0.3822(6)$	$0.1343(7)$	$-0.8319(5)$	$0.0681(15)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (1)

S-03
S-04
S-C10
$\xrightarrow[\substack{\mathrm{S}-\mathrm{C} 2 \\ \mathrm{O}-\mathrm{Cl}}]{\text { c- }}$
\bigcirc
O2-C9
$\mathrm{Cl} 1-\mathrm{C5}$
$\mathrm{Cl}-\mathrm{C} 2$
C2-C3
C3-C6
O3-S-O4
O3-S-C10
O4-S-C10
O3-S-C2
04-S-C2
C10-S-C2
C8-02-C9
O1-Cl-C5
$\mathrm{O}-\mathrm{Cl}-\mathrm{C} 2$
$\mathrm{C5}-\mathrm{Cl}-\mathrm{C}_{2}$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{S}$
C3-C2-S
$\mathrm{C} 6-\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{C} 6-\mathrm{C} 3-\mathrm{C} 7$
C4-C3-C7

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=296.381$
Triclinic
$P \overline{1}$
$a=7.6400(10) \AA$
$b=9.8420(10) \AA$
$c=11.0590(10) \AA$
$\alpha=116.160(10)^{\circ}$
$\beta=100.760(10)^{\circ}$
$\gamma=90.260(10)^{\circ}$
$V=729.69(16) \AA^{3}$
$Z=2$
$D_{x}=1.3489 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
2770 measured reflections
2563 independent reflections 2119 observed reflections $[I>2 \sigma(I)]$
$1.409(5)$
$1.442(4)$
$1.759(6)$
$1.788(4)$
$1.189(7)$
$1.400(8)$
$1.407(8)$
$1.502(9)$
$1.537(7)$
$1.548(7)$
$1.516(9)$
$117.9(3)$
$108.2(3)$
$108.8(3)$
$108.1(2)$
$109.5(3)$
$103.4(2)$
$113.0(6)$
$127.0(6)$
$125.7(5)$
$107.3(5)$
$104.3(4)$
$114.2(3)$
$117.5(3)$
$109.4(5)$
$108.2(5)$
$111.9(5)$
$\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{C} 3-\mathrm{C} 7$
$\mathrm{C} 4-\mathrm{C} 5$
$\mathrm{C} 7-\mathrm{C} 8$
$\mathrm{C} 10-\mathrm{C} 15$
$\mathrm{C} 10-\mathrm{C} 11$
$\mathrm{C} 11-\mathrm{C} 12$
$\mathrm{C} 12-\mathrm{C} 13$
$\mathrm{C} 13-\mathrm{C} 14$
$\mathrm{C} 14-\mathrm{C} 15$

$\mathrm{C} 6-\mathrm{C} 3-\mathrm{C} 2$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$
$\mathrm{C} 7-\mathrm{C} 3-\mathrm{C} 2$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$
$\mathrm{C} 8-\mathrm{C}-\mathrm{C} 3$
$\mathrm{O} 2-\mathrm{C}--\mathrm{C} 7$
$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 11$
$\mathrm{C} 15-\mathrm{C} 10-\mathrm{S}$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{S}$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$
1.530 (8)
1.544 (8)
1.500 (10)
1.507 (10)
1.381 (8)
1.397 (7)
1.355 (11)
1.357 (12)
1.387 (11)
$111.7(5)$
$100.3(4)$
$115.0(5)$
$106.7(5)$
$105.7(5)$
$118.8(5)$
$110.5(5)$
$120.1(6)$
$120.7(5)$
$119.2(5)$
$118.9(7)$
$122.4(7)$
$118.5(7)$
$121.1(7)$
$118.9(7)$
$R e$
Re
R
w
S
2
2
2
O

$$
\begin{aligned}
& U \\
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0823 P)^{2}\right. \\
&+0.2415 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

$\Delta \rho_{\text {max }}=0.363 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.744 \mathrm{e}^{-3}$
Extinction correction:
SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0263 (55)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

$$
(\Delta / \sigma)_{\max }<0.001
$$

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for (2)

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	$U_{\text {eq }}$
S	$0.46777(7)$	$0.78014(6)$	$0.23036(5)$	$0.0306(2)$
O1	$0.5526(2)$	$0.9171(2)$	$0.3475(2)$	$0.0418(4)$
O2	$0.5791(2)$	$0.6583(2)$	$0.1764(2)$	$0.0402(4)$
O3	$0.1949(2)$	$0.9623(2)$	$0.3859(2)$	$0.0395(4)$
O4	$-0.0754(2)$	$0.6178(2)$	$0.3171(2)$	$0.0472(5)$
C1	$0.2831(3)$	$0.7026(2)$	$0.2675(2)$	$0.0281(5)$
C2	$0.1287(3)$	$0.8065(2)$	$0.3053(2)$	$0.0316(5)$
C3	$0.0453(3)$	$0.7518(3)$	$0.3960(2)$	$0.0383(5)$
C4	$0.2039(3)$	$0.7153(3)$	$0.4781(2)$	$0.0410(6)$
C5	$0.3394(3)$	$0.6489(2)$	$0.3853(2)$	$0.0333(5)$
C6	$0.2876(4)$	$0.4832(3)$	$0.2744(3)$	$0.0417(6)$
C7	$0.2245(3)$	$0.5332(3)$	$0.1619(2)$	$0.0345(5)$
C8	$-0.0092(3)$	$0.8020(3)$	$0.1853(3)$	$0.0412(6)$
C9	$0.5289(4)$	$0.6826(3)$	$0.4704(3)$	$0.0445(6)$
C10	$0.3764(3)$	$0.8250(3)$	$0.0952(2)$	$0.0330(5)$
C11	$0.3331(4)$	$0.7104(3)$	$-0.0379(2)$	$0.0431(6)$
C12	$0.2519(4)$	$0.7439(3)$	$-0.1427(3)$	$0.0566(7)$
C13	$0.2185(5)$	$0.8916(3)$	$-0.1134(3)$	$0.0588(8)$
C14	$0.2640(4)$	$1.0055(3)$	$0.0183(3)$	$0.0537(7)$
C15	$0.3438(4)$	$0.9741(3)$	$0.1254(3)$	$0.0424(6)$

Table 4. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (2)

$\mathrm{S}-\mathrm{Ol}$	1.433 (2)	C3--C4	1.517 (3)
$\mathrm{S}-\mathrm{O} 2$	1.444 (2)	$\mathrm{C} 4-\mathrm{C} 5$	1.538 (3)
$\mathrm{S}-\mathrm{Cl} 10$	1.764 (2)	C5-C9	1.518 (3)
$\mathrm{S}-\mathrm{Cl}$	1.795 (2)	C5-C6	1.539 (3)
O3-C2	1.422 (3)	C6-C7	1.530 (3)
O4-C3	1.423 (3)	$\mathrm{Cl} 0-\mathrm{Cl1}$	1.378 (3)
$\mathrm{C} 1-\mathrm{C} 7$	1.558 (3)	$\mathrm{C} 10-\mathrm{C} 15$	1.389 (3)
$\mathrm{Cl}-\mathrm{C} 2$	1.558 (3)	$\mathrm{Cl1}-\mathrm{Cl} 2$	1.381 (4)
$\mathrm{C} 1-\mathrm{C} 5$	1.600 (3)	C12-Cl3	1.379 (4)
C2-C8	1.516 (3)	C13-C14	1.366 (4)
$\mathrm{C} 2-\mathrm{C} 3$	1.553 (3)	C14-C15	1.387 (4)
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 2$	116.82 (10)	O4-C3-C2	112.9 (2)
$\mathrm{O} 1-\mathrm{S}-\mathrm{C} 10$	108.57 (10)	C4-C3-C2	104.5 (2)
$\mathrm{O} 2-\mathrm{S}-\mathrm{C} 10$	107.17 (10)	C3--C4-C5	107.9 (2)
$\mathrm{O} 1-\mathrm{S}-\mathrm{Cl}$	110.88 (10)	C9--C5-C4	110.9 (2)
$\mathrm{O} 2-\mathrm{S}-\mathrm{C} 1$	106.59 (10)	C9--C5-C6	115.3 (2)
C10-S-- Cl	106.28 (10)	C4-C5--C6	114.8 (2)
C7-C1-C2	115.9 (2)	C9-C5-C1	121.7 (2)
$\mathrm{C} 7-\mathrm{Cl}-\mathrm{C} 5$	88.7 (2)	C4-C5--C1	103.6 (2)
C2-C1-C5	107.4 (2)	C6-C5-C1	88.7 (2)
$\mathrm{C} 7-\mathrm{Cl}-\mathrm{S}$	112.00 (14)	C7--C6-C5	91.9 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{S}$	115.72 (14)	C6-C7-Cl	90.6(2)
$\mathrm{C} 5-\mathrm{Cl}-\mathrm{S}$	114.11 (14)	$\mathrm{Cl1}-\mathrm{Cl0}-\mathrm{Cl5}$	121.2(2)
O3-C2-C8	105.1 (2)	C11-C10-S	119.3 (2)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	108.6 (2)	C15-C10-S	119.4 (2)
C8--C2-C3	112.3 (2)	$\mathrm{Cl0}-\mathrm{Cl1}-\mathrm{C12}$	119.3 (2)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{Cl}$	111.8 (2)	$\mathrm{C} 13-\mathrm{Cl} 2-\mathrm{Cl1}$	119.7 (3)
C8--C2-Cl	116.2 (2)	$\mathrm{C} 14-\mathrm{Cl} 3-\mathrm{C} 12$	120.9 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	102.9 (2)	C13-C14-C15	120.4 (3)
O4-C3-C4	108.5 (2)	C14-C15-C10	118.4 (2)

The H atoms were found in difference Fourier maps and refined with an overall isotropic displacement parameter that converged to $U=0.068$ (2) and 0.054 (2) \AA^{2} for compounds (1) and (2), respectively.

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: ZORTEP (Zsolnai, 1995).

This work has received partial support from FAPESP (Proc. 94/1213-5), CNPq (Proc. 300003/89-7), CAPES and FINEP.

[^1]
References

Cremer, D. \& Pople. J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Dickens, J. C. \& Mori, K. (1989). J. Chem. Ecol. 15, 517-528.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Franke, W., Bartels, J., Krohn, S., Schultz, S., Baader, E., Tengo, J. \& Schneider, D. (1989). Pure Appl. Chem. 61, 539-542.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Tumlinson, J. H., Gueldner, R. C., Hardee, D. D., Thompson, A. C., Hedin, P. A. \& Minyard, J. P. (1971). J. Org. Chem. 36, 2616-2621.
Zsolnai, L. (1995). ZORTEP. An Interactive Molecular Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1996). C52, 1770-1772

5-Benzylidene-8-ethylthiocarbamoyl-9-phenyl-7,8-diazabicyclo[4.3.0]non-6-ene

Ömer Ergin, ${ }^{a}$ Rejo Sillanpäää and Akgül Yeşilada ${ }^{c}$
${ }^{a}$ Balıkesir Üniversitesi, Necatibey Eğitim Fakültesi Fizik Eğitimi Bölümü, Balıkesir, Turkey, ${ }^{b}$ Department of Chemistry, University of Turku, SF-20500 Turku, Finland, and ${ }^{\text {'Hacettepe Üniversitesi, Eczacllik Fakültesi, Farmasotik }}$ Kimya Bölümü, Ankara, Turkey

(Received 21 July 1995; accepted 20 November 1995)

Abstract

The title compound, $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{~S}$, was obtained by the reaction of dibenzylidenecyclohexanone with hydrazine hydrate, followed by the treatment of the resulting

pyrazoline compound with ethyl isothiocyanate. The structure of the title compound was elucidated by IR, ${ }^{1}$ H NMR spectroscopy and elementary analysis, and the stereochemical properties were investigated by X-ray analysis. The cyclohexane ring has a slightly distorted chair conformation while the 2-pyrazoline system is highly flattened from an ideal envelope conformation. One phenyl ring and thiocarbamoyl group are linked to the 2-pyrazoline system in axial and in equatorial positions, respectively. The other phenyl ring is bonded to the exocyclic double bond.

Comment

5-Benzylidine-8-ethylthiocarbomyl-9-phenyl-7,8-diaza-bicyclo[4.3.0]non-6-ene, (I), which consists of a pyrazoline structure condensed with a cyclohexane ring was shown to have potent antidepressant activity during our previous study (Bilgin, Yeşilada, Palaska \& Sunal, 1992). These types of compounds may be formed as $1 \mathrm{H}, 9 \mathrm{H}$-cis,trans isomers or as a mixture in the reaction media (Hassner \& Michelson, 1992; Lóránd et al., 1985). On the other hand, the stereochemistry of biologically active compounds plays an important role as far as drug-receptor interactions are concerned (Foye, 1989).

(I)

In this study the molecular structure of the title compound, (I), was investigated in order to clarify the configuration of the isomeric form together with the conformation of the ring systems, which we think should aid our future research on the structure-activity relationship of such compounds. All bond lengths and bond angles are in fair agreement with the literature values (Ergin, Sillanpää \& Ezer, 1993; Lóránd et al., 1985). It is concluded from the torsion angles (Table 2) and also from the sums of bond angles at $\mathrm{C}(2)$ and $\mathrm{C}(5), 358.5$ and 359.8°, respectively, that the aliphatic six-membered ring has a slightly distorted chair conformation. Taking into account the fact that the $\mathrm{C}(2)-\mathrm{C}(3)$ bond is also part of the 2-pyrazoline system and that both $C(5)$ and $C(2)$ are involved in exocyclic double bonding, the deviation from an ideal chair conformation is surprisingly small. As the absolute values of the torsion angles of 2-pyrazoline system are $3.5(2)$ and $-12.6(2)^{\circ}$, the ring is highly flattened from an ideal envelope conformation with $C(3)$ as the 'flap' atom. This is also confirmed by the sum of bond angles $\left(538.1^{\circ}\right)$ in the five-membered ring. The torsion

[^0]: © 1996 International Union of Crystallography
 Printed in Great Britain - all rights reserved

[^1]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: LIl145). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

